(no subject)
Dec. 18th, 2008 06:48 amОК, основы теорфизики - это нереалистично, вычеркиваем.
Какие могут быть более реалистические цели?
Вариант 1-й. Классическая и квантовая механика с геометрической точки зрения, включая интеграл по траекториям. Это все уже есть в монографиях, в общем-то, даже без тензорных индексов. За исключением двух вещей: калибровочных симметрий (метод БРСТ) и систем с суперсимметрией. По ним есть либо обзоры, либо изложения "с индексами". На самом деле, суперсимметричная квантовая механика тесно связана с теорией Ходжа и методом уравнения теплопроводности в теории индекса эллиптических операторов, которые прекрасно изложены в разных книжках, но интерес представляет как раз переход от классической к квантовой суперсимметричной механике.
Вариант 2-й. Классическая механика и классическая теория поля, с уклоном в суперсимметричные и топологические теории поля. Осовременненный Дубровин-Новиков-Фоменко, в общем. Кроме классической механики суперсимметричных систем, можно описать кучу важных примеров теорий поля: сигма-модели, супер-Янг-Миллс и топологические калибровочные теории. Всякие естественные уравнения (инстантонные, монопольные) тоже естественно включаются. Но если за бортом оставить квантование, то исчезает мотивация все это хозяйство изучать: приложения все основаны на функциональном интеграле. Или не исчезает? Мотивация может быть и "внешней" по отношению к книге.
Вариант 3-й: Какая-то комбинация 1 и 2. Надо как-то ухитриться придать смысл функциональному интегралу в теориях поля, хотя бы в топологических. Например, в качестве определения можно взять рецепт вычисления методом локализации. Сомнительно, что это можно сделать в общем виде. Да и в специальных примерах это сделать непросто. И это будет очень длинно. Нет, без общего понятия функционального интеграла это бессмысленное занятие.
Какие могут быть более реалистические цели?
Вариант 1-й. Классическая и квантовая механика с геометрической точки зрения, включая интеграл по траекториям. Это все уже есть в монографиях, в общем-то, даже без тензорных индексов. За исключением двух вещей: калибровочных симметрий (метод БРСТ) и систем с суперсимметрией. По ним есть либо обзоры, либо изложения "с индексами". На самом деле, суперсимметричная квантовая механика тесно связана с теорией Ходжа и методом уравнения теплопроводности в теории индекса эллиптических операторов, которые прекрасно изложены в разных книжках, но интерес представляет как раз переход от классической к квантовой суперсимметричной механике.
Вариант 2-й. Классическая механика и классическая теория поля, с уклоном в суперсимметричные и топологические теории поля. Осовременненный Дубровин-Новиков-Фоменко, в общем. Кроме классической механики суперсимметричных систем, можно описать кучу важных примеров теорий поля: сигма-модели, супер-Янг-Миллс и топологические калибровочные теории. Всякие естественные уравнения (инстантонные, монопольные) тоже естественно включаются. Но если за бортом оставить квантование, то исчезает мотивация все это хозяйство изучать: приложения все основаны на функциональном интеграле. Или не исчезает? Мотивация может быть и "внешней" по отношению к книге.
Вариант 3-й: Какая-то комбинация 1 и 2. Надо как-то ухитриться придать смысл функциональному интегралу в теориях поля, хотя бы в топологических. Например, в качестве определения можно взять рецепт вычисления методом локализации. Сомнительно, что это можно сделать в общем виде. Да и в специальных примерах это сделать непросто. И это будет очень длинно. Нет, без общего понятия функционального интеграла это бессмысленное занятие.
(no subject)
Date: 2008-12-28 02:07 am (UTC)В статье "гомотопические группы" читателю сообщают, просто и прямо, что фундаментальная группа связного (sic) пространства не зависит от выбора отмеченной точки, и последнюю в обозначениях можно опустить.
Следующая статья "группа классов идеалов" стремится объяснить понятие группы классов идеалов, не упоминая слова "факторгруппа". Основная теорема арифметики, контрпримеры к ней в числовых полях, и связь между элементами кольца и главными идеалами обсуждаются без единого упоминания понятия "обратимый элемент". (Последнее понятие не упоминается также и в отдельной статье "Основная теорема арифметики", см. стр.699-700, где вместо этого читателя подводят к мысли, что можно обойтись плюс-минус единицей.)
Далее говорится много расплывчатых слов о том, как г.к.и. что-то там измеряет, и чем она сложнее, тем что-то там от чего-то там дальше; но что группа классов идеалов числового поля конечна, не сообщается (чтобы об этом узнать, надо пройти по ссылке на 17-страничный текст под названием "Алгебраические числа").
Хотелось бы сказать, что это профанация, но мы скажем мягче: мне, как человеку, выросшему и живущему в Москве, трудно по достоинству оценить данное порождение американской математической культуры. Пусть его оценивают американцы. Поскольку в проекте задействованы выдающиеся математики, мы предположим, что, подойдя умеючи, читатель сможет извлечь из данной книги для себя немало пользы. Ну а если нет, то, возможно, наоборот.
(no subject)
Date: 2008-12-28 02:38 am (UTC)Проблема тут не географическая - в Москве тоже энциклопедию написали.
(no subject)
Date: 2008-12-28 02:56 am (UTC)Московский пятитомный математический энциклопедический словарь -- это совсем другое дело! Он информативен, корректен, и может быть очень полезен -- в юности я с удовольствием им пользовался, и не только я. Жанр математического словаря своебразен, разумеется, и к нему можно относиться по-разному, что мне кажется делом вкуса (я не видел или забыл, что вы про это раньше писали). Но во всяком случае, ничего подобного процитированному выше я в московском словаре, много раз по делу пользовавшись им, не встречал.
(no subject)
Date: 2008-12-28 08:03 am (UTC)Ваш рассказ хотя бы частично противоречит Вашему замечанию "Это получается такая американская версия советского пятитомного математического словаря".
(no subject)
Date: 2008-12-28 12:38 pm (UTC)У меня нет сейчас под рукой пятитомного словаря, он остался на другой квартире, где моя мама живет. Поэтому напишу по памяти и ощущению, что должно/могло бы быть написано в этом словаре в статье про группу классов идеалов. По-моему, там должна быть точная последовательность обратимые элементы кольца -> мультипликативная группа поля -> дробные идеалы -> группа классов идеалов.
(no subject)
Date: 2010-03-19 01:25 pm (UTC)(no subject)
Date: 2008-12-28 03:08 am (UTC)(no subject)
Date: 2008-12-28 03:30 am (UTC)(no subject)
Date: 2008-12-28 04:27 am (UTC)Про г.к.и. оценить по достоинству не могу из-за необразованности своей.
(no subject)
Date: 2008-12-28 12:28 pm (UTC)(no subject)
Date: 2008-12-28 06:31 pm (UTC)Маленький ляп я как раз заметил, Вы на него указали сразу. Я брал класс по топологии и мы соотвествующий пример обсуждали. Где же тогда здесь большой ляп в упор не вижу.
(no subject)
Date: 2008-12-28 06:43 pm (UTC)(no subject)
Date: 2008-12-28 06:48 pm (UTC)Я с Вами согласен что опускать точку это не верно, но называть это ляпом бы не стал.
(no subject)
Date: 2008-12-28 07:12 pm (UTC)Забавно что статья называется Homotopy Groups а на самом деле про ф.г., в конце только ссылка стоит куда-то.
(no subject)
Date: 2008-12-28 07:32 pm (UTC)Энциклопедия математики, создающая в подобных местах двусмысленность и путаницу, вместо того, чтобы наводить ясность, подлежит выбрасыванию в корзину. Не говоря уже о неформальных аспектах математического знания.
(no subject)
Date: 2010-03-14 11:44 am (UTC)Ошибка это или нет --- зависит от контекста, потому что очень часто под "связностью" подразумевают линейную связность. Правда, сдается мне, в этой книге нет соответствующего замечания и объяснения разницы.
(no subject)
Date: 2008-12-28 05:05 am (UTC)http://gowers.wordpress.com/2008/09/17/princeton-companion-errata/#more-185
Больше всего поразило, что Гауэрс неправильно определяет индекс неподвижной точки. Народ находит ляпы, а он оправдывается, иногда очень смешно:
when I visualized myself walking from the North Pole to the South Pole, I didn’t spot that when I got there I would not have multiplied myself by -1, but instead would have rotated myself. Of course, that’s pretty close to what you say above.
(no subject)
Date: 2008-12-28 01:44 pm (UTC)Вещественная проективная плоскость получается из обычной плоскости добавлением точки на бесконечности (с.43, нашел Michael Hutchings). Кватернионы обычно вводятся как числовая система, где корней из минус единицы не один, а три (c.277, нашел Bob Palais). Беспредел какой-то.
(no subject)
Date: 2010-03-14 12:29 pm (UTC)