(no subject)
Dec. 18th, 2008 06:48 amОК, основы теорфизики - это нереалистично, вычеркиваем.
Какие могут быть более реалистические цели?
Вариант 1-й. Классическая и квантовая механика с геометрической точки зрения, включая интеграл по траекториям. Это все уже есть в монографиях, в общем-то, даже без тензорных индексов. За исключением двух вещей: калибровочных симметрий (метод БРСТ) и систем с суперсимметрией. По ним есть либо обзоры, либо изложения "с индексами". На самом деле, суперсимметричная квантовая механика тесно связана с теорией Ходжа и методом уравнения теплопроводности в теории индекса эллиптических операторов, которые прекрасно изложены в разных книжках, но интерес представляет как раз переход от классической к квантовой суперсимметричной механике.
Вариант 2-й. Классическая механика и классическая теория поля, с уклоном в суперсимметричные и топологические теории поля. Осовременненный Дубровин-Новиков-Фоменко, в общем. Кроме классической механики суперсимметричных систем, можно описать кучу важных примеров теорий поля: сигма-модели, супер-Янг-Миллс и топологические калибровочные теории. Всякие естественные уравнения (инстантонные, монопольные) тоже естественно включаются. Но если за бортом оставить квантование, то исчезает мотивация все это хозяйство изучать: приложения все основаны на функциональном интеграле. Или не исчезает? Мотивация может быть и "внешней" по отношению к книге.
Вариант 3-й: Какая-то комбинация 1 и 2. Надо как-то ухитриться придать смысл функциональному интегралу в теориях поля, хотя бы в топологических. Например, в качестве определения можно взять рецепт вычисления методом локализации. Сомнительно, что это можно сделать в общем виде. Да и в специальных примерах это сделать непросто. И это будет очень длинно. Нет, без общего понятия функционального интеграла это бессмысленное занятие.
Какие могут быть более реалистические цели?
Вариант 1-й. Классическая и квантовая механика с геометрической точки зрения, включая интеграл по траекториям. Это все уже есть в монографиях, в общем-то, даже без тензорных индексов. За исключением двух вещей: калибровочных симметрий (метод БРСТ) и систем с суперсимметрией. По ним есть либо обзоры, либо изложения "с индексами". На самом деле, суперсимметричная квантовая механика тесно связана с теорией Ходжа и методом уравнения теплопроводности в теории индекса эллиптических операторов, которые прекрасно изложены в разных книжках, но интерес представляет как раз переход от классической к квантовой суперсимметричной механике.
Вариант 2-й. Классическая механика и классическая теория поля, с уклоном в суперсимметричные и топологические теории поля. Осовременненный Дубровин-Новиков-Фоменко, в общем. Кроме классической механики суперсимметричных систем, можно описать кучу важных примеров теорий поля: сигма-модели, супер-Янг-Миллс и топологические калибровочные теории. Всякие естественные уравнения (инстантонные, монопольные) тоже естественно включаются. Но если за бортом оставить квантование, то исчезает мотивация все это хозяйство изучать: приложения все основаны на функциональном интеграле. Или не исчезает? Мотивация может быть и "внешней" по отношению к книге.
Вариант 3-й: Какая-то комбинация 1 и 2. Надо как-то ухитриться придать смысл функциональному интегралу в теориях поля, хотя бы в топологических. Например, в качестве определения можно взять рецепт вычисления методом локализации. Сомнительно, что это можно сделать в общем виде. Да и в специальных примерах это сделать непросто. И это будет очень длинно. Нет, без общего понятия функционального интеграла это бессмысленное занятие.
(no subject)
Date: 2008-12-28 11:24 pm (UTC)Примеры философии я уже приводил. Целые числа похожи на многочлены от одной переменной с коэффициентами в конечном поле. Вещественные числа похожи на p-адические, и желательно их рассматривать параллельно. Неканонических изоморфизмов нам не надо. Теории гомологий надо определять в терминах произвольных резольвент, а не канонических. Полезно думать о простых числах как о случайно распределенных по определенному закону, хотя на самом деле в них нет ничего случайного.
Данное разграничение между (невербализуемой, по моему мнению) интуицией и (вербализуемой, по моему мнению) философией возникло в предшествовавшей дискуссии между
Реально этот Companion, похоже, соединяет в себе элементы справочника, сборника обзоров, сборника популярных рассказов о математиках и математике, и чего-нибудь еще. Но если вы вспомните мое первоначальное утверждение, то оно звучало, цитирую: "Что мне особенно трудно себе представить, так это книгу по математике, удобную для использования в качестве справочника, но содержащую много неформальных соображений." Вы спросили, не является ли Companion такой книгой. Если вы теперь считаете, что Companion следует рассматривать как сборник обзоров, а не как справочник, то вы сами ответили на свой вопрос, отрицательно.
(no subject)
Date: 2008-12-31 11:41 am (UTC)