leblon: (Default)
[personal profile] leblon
ОК, основы теорфизики - это нереалистично, вычеркиваем.

Какие могут быть более реалистические цели?

Вариант 1-й. Классическая и квантовая механика с геометрической точки зрения, включая интеграл по траекториям. Это все уже есть в монографиях, в общем-то, даже без тензорных индексов. За исключением двух вещей: калибровочных симметрий (метод БРСТ) и систем с суперсимметрией. По ним есть либо обзоры, либо изложения "с индексами". На самом деле, суперсимметричная квантовая механика тесно связана с теорией Ходжа и методом уравнения теплопроводности в теории индекса эллиптических операторов, которые прекрасно изложены в разных книжках, но интерес представляет как раз переход от классической к квантовой суперсимметричной механике.

Вариант 2-й. Классическая механика и классическая теория поля, с уклоном в суперсимметричные и топологические теории поля. Осовременненный Дубровин-Новиков-Фоменко, в общем. Кроме классической механики суперсимметричных систем, можно описать кучу важных примеров теорий поля: сигма-модели, супер-Янг-Миллс и топологические калибровочные теории. Всякие естественные уравнения (инстантонные, монопольные) тоже естественно включаются. Но если за бортом оставить квантование, то исчезает мотивация все это хозяйство изучать: приложения все основаны на функциональном интеграле. Или не исчезает? Мотивация может быть и "внешней" по отношению к книге.

Вариант 3-й: Какая-то комбинация 1 и 2. Надо как-то ухитриться придать смысл функциональному интегралу в теориях поля, хотя бы в топологических. Например, в качестве определения можно взять рецепт вычисления методом локализации. Сомнительно, что это можно сделать в общем виде. Да и в специальных примерах это сделать непросто. И это будет очень длинно. Нет, без общего понятия функционального интеграла это бессмысленное занятие.

(no subject)

Date: 2008-12-22 09:22 am (UTC)
From: [identity profile] chaource.livejournal.com
Думаю, что жалко - писать передъ каждой формулой 3-4 знака суммированія, тѣмъ болѣе, что тамъ на дѣлѣ нѣтъ никакого суммированія, а просто есть свёртки по парамъ типа V V*.

Физики запоминаютъ такія вещи, какъ индексъ вверху-внизу или 4 разныхъ обозначенія для скалярнаго произведенія векторовъ (\vec a \cdot \vec b,
[Error: Irreparable invalid markup ('<a|b>') in entry. Owner must fix manually. Raw contents below.]

Думаю, что жалко - писать передъ каждой формулой 3-4 знака суммированія, тѣмъ болѣе, что тамъ на дѣлѣ нѣтъ никакого суммированія, а просто есть свёртки по парамъ типа V V*.

Физики запоминаютъ такія вещи, какъ индексъ вверху-внизу или 4 разныхъ обозначенія для скалярнаго произведенія векторовъ (\vec a \cdot \vec b, <a|b>, a_\mu b^\mu, \bf a^T \bf b ), путёмъ продѣлыванія многихъ вычисленій при изученіи стандартныхъ курсовъ теорфизики. Если этого не продѣлать - запомнить эту чушь практически невозможно. Если продѣлать, но безъ осознанія (т.е. какъ это обычно преподаютъ) - есть опасность, что у будущихъ физиковъ не возникнетъ сразу пониманія, напримѣръ, что обозначеніе <a|b> можно примѣнять не только для квантовой механики.

(no subject)

Date: 2008-12-22 11:07 am (UTC)
From: [identity profile] sowa.livejournal.com
Да нет, не нужно писать 3-4 знака суммирования. Больше одного бывает нужно крайнет редко, так же как и 4 знака интеграла подряд ни один нормальный математик не пишет. \Sum_{i,j,k}, можно даже не указывать пределы суммирования, если они ясны из контекста.

Разница смысла вверху-внизу трудна для запоминание, потому что она бинарная. Как право-лево. Какова стандартная ориентация плоскости - по или против часовой стрелки? Я не знаю, и поэтому каждый раз говорю, какая у меня. Может, долгая практика помогает, но ожидать от математика, что он ей займется, не стоит.

Profile

leblon: (Default)
leblon

January 2026

S M T W T F S
    123
45678910
11 121314151617
18 192021222324
25262728293031

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 13th, 2026 02:09 pm
Powered by Dreamwidth Studios