Спин и статистика
May. 22nd, 2015 11:20 amЯ тут статью написал, которая мне очень нравится. Сейчас расскажу почему. История начинается давно, еще в 30е годы. Фирц и Паули показали, что в локальной релятивисткой квантовой механике частицы с целым спином должны быть бозонами (подчиняться статистике Бозе-Эйнштейна), а частицы с полуцелым спином фермионами (подчиняться статистике Ферми-Дирака). Т.е. если оператор рождения частицы реализует обычное представление группы Лоренца, то пространство состояний это бозонное пространство Фока (сумма всех симметрических степеней пространства одночатичных состояний). А если представление проективное, то надо использовать фермионное пространство Фока (сумма всех внешних степеней). Иначе либо причинность будет нарушаться, либо энергия не будет ограничена снизу. Очень важная теорема. Лоренц-инвариантность тут очень по делу, в нерелятивисткой теории поля нет проблемы с бозонами полуцелого спина, или с фермионами целого спина.
А что если Лоренц-инвариантность отсутствует? Например, если пространство искривлено, как в общей теории относительности? Или если оно дискретное на очень малых расстояниях? Как тогда отличить два типа частиц?
С точки зрения геометрии, полуцелый спин отличается от "нормального" тем, что наличие метрики на пространстве-времени еще не полностью определяет, как его параллельно переносить из точки в точку. Нужна еще спиновая структура. Это понятие, в отличие от метрики, дискретное и чисто топологическое. На компактном пространстве есть только конечное число вариантов спиновой структуры. И спиновую структуру, с некоторыми усилиями, можно определить даже в ситуации, когда наше пространство негладкое, а, например, составлено из маленьких многогранников. Такая дискретизация пространства - стандартный технический прием в физике (например, в теории поля на решетке, в стат. механике, и в моделях физики твердого тела). Значит, если связь спина со статистикой распространяется и на такие ситуации (это неочевидно), то мы ожидаем, что для определения фермионных моделей на решетке (например, на триангулированном пространстве) потребуется задать спиновую структуру.
Странным образом, ничего такого в литературе не наблюдалось. Правда, это может быть связано с тем, что физики обычно рассматривают очень регулярные (кубические) решетки, с периодическими граничными условиями. Т.е. тороидальную геометрию. В таких ситуациях затруднительно отличить спиновую структуру от других, более простых вещей.
Недавно, в связи с топологическими фазами вещества, физики наконец заинтересовались моделями стат. механики с фермионами. Т.е. моделями, где на симплексах триангуляции живут как фермионы (анти-коммутирующие переменные), так и обычные бозоны (например, элементы конечного множества, как в модели Изинга). Стат. сумма тогда - сумма по бозонным переменным и интеграл Березина по фермионным переменным. Такие модели описывают топологические фазы материи, "сделанные" из электронов. Парадокс в том, что никакой спиновой структуры при этом замечено не было. Этот вопрос можно было задать еще в 60е годы, когда физики (Либ, Маттис и пр.) обнаружили феномен "бозонизации": некоторые модели фермионов в одном пространственном измерении эквивалентны бозонным моделям. Но ведь уравнение Дирака зависит от выбора спиновой структуры, а бозонам на нее начхать, как же так?
Ответ оказался простым: люди просто "проморгали" зависимость от спиновой структуры. Некоторые формулы в физических статьях плохо определены если ее не зафиксировать. Причина появления спиновой структуры проста: фермионы в разных точках анти-коммутируют, значит, если порядок точек не зафиксирован, произведение фермионных наблюдаемых, из которых строится лагранжиан, определено с точностью до знака. Оказывается, чтобы убрать эту неоднозначность, достаточно фиксировать спиновую структуру (точнее, ее дискретный аналог). Т.е. связь спина и статистики имеет место быть безо всякой Лоренц инвариантности. А вот локальность (т.е. возможность все дискретизовать) существенна.
Попутно мы придумали как описывать спиновые структуры на триангулированных многообразиях чисто комбинаторно. Математики, вроде, знали только как это делать в размерности 2. И заодно мы получили комбинаторную конструкцию некоторых топологических инвариантов спиновых многообразий (например, спиновой аналог Тураева Виро, или спиновых бордизмов). Попросту, написали модели стат. механики, стат. сумма которых вычисляет эти инварианты.
А что если Лоренц-инвариантность отсутствует? Например, если пространство искривлено, как в общей теории относительности? Или если оно дискретное на очень малых расстояниях? Как тогда отличить два типа частиц?
С точки зрения геометрии, полуцелый спин отличается от "нормального" тем, что наличие метрики на пространстве-времени еще не полностью определяет, как его параллельно переносить из точки в точку. Нужна еще спиновая структура. Это понятие, в отличие от метрики, дискретное и чисто топологическое. На компактном пространстве есть только конечное число вариантов спиновой структуры. И спиновую структуру, с некоторыми усилиями, можно определить даже в ситуации, когда наше пространство негладкое, а, например, составлено из маленьких многогранников. Такая дискретизация пространства - стандартный технический прием в физике (например, в теории поля на решетке, в стат. механике, и в моделях физики твердого тела). Значит, если связь спина со статистикой распространяется и на такие ситуации (это неочевидно), то мы ожидаем, что для определения фермионных моделей на решетке (например, на триангулированном пространстве) потребуется задать спиновую структуру.
Странным образом, ничего такого в литературе не наблюдалось. Правда, это может быть связано с тем, что физики обычно рассматривают очень регулярные (кубические) решетки, с периодическими граничными условиями. Т.е. тороидальную геометрию. В таких ситуациях затруднительно отличить спиновую структуру от других, более простых вещей.
Недавно, в связи с топологическими фазами вещества, физики наконец заинтересовались моделями стат. механики с фермионами. Т.е. моделями, где на симплексах триангуляции живут как фермионы (анти-коммутирующие переменные), так и обычные бозоны (например, элементы конечного множества, как в модели Изинга). Стат. сумма тогда - сумма по бозонным переменным и интеграл Березина по фермионным переменным. Такие модели описывают топологические фазы материи, "сделанные" из электронов. Парадокс в том, что никакой спиновой структуры при этом замечено не было. Этот вопрос можно было задать еще в 60е годы, когда физики (Либ, Маттис и пр.) обнаружили феномен "бозонизации": некоторые модели фермионов в одном пространственном измерении эквивалентны бозонным моделям. Но ведь уравнение Дирака зависит от выбора спиновой структуры, а бозонам на нее начхать, как же так?
Ответ оказался простым: люди просто "проморгали" зависимость от спиновой структуры. Некоторые формулы в физических статьях плохо определены если ее не зафиксировать. Причина появления спиновой структуры проста: фермионы в разных точках анти-коммутируют, значит, если порядок точек не зафиксирован, произведение фермионных наблюдаемых, из которых строится лагранжиан, определено с точностью до знака. Оказывается, чтобы убрать эту неоднозначность, достаточно фиксировать спиновую структуру (точнее, ее дискретный аналог). Т.е. связь спина и статистики имеет место быть безо всякой Лоренц инвариантности. А вот локальность (т.е. возможность все дискретизовать) существенна.
Попутно мы придумали как описывать спиновые структуры на триангулированных многообразиях чисто комбинаторно. Математики, вроде, знали только как это делать в размерности 2. И заодно мы получили комбинаторную конструкцию некоторых топологических инвариантов спиновых многообразий (например, спиновой аналог Тураева Виро, или спиновых бордизмов). Попросту, написали модели стат. механики, стат. сумма которых вычисляет эти инварианты.
Re: Ещё о спиновой связности
Date: 2015-05-29 09:59 pm (UTC)Всё-таки, я думаю, в гравитации (обычной 4-х мерной при стандартном подходе Фока-Иваненко, Германа Вейля 20-х годов) у нас по-другому, хотя уже начинаю сомневаться:).
1.Когда мы рассматриваем риманову поверхность, то у нас спинор - квадратный корень из касательного вектора и всё, как Вы написали.
2. Но в гравитации "обычной" функции перехода для касательного расслоения определяются координатными преобразованиями, а для спинового расслоения - локально - лоренцевыми, т.е., независимыми от координатных. (Правда, связь есть: полная ковариантная производная от репера от этих двух локальных групп равна нулю). Я не исключаю того, что мы используем разную терминологию и под связностью Леви-Чивиты я понимаю трёхиндексный символ из т.2 Ландау- Лифшица, а Вы - полную ковариантную производную (репера)и тогда мы говорим о том же самом. Не согласны?
Два подхода видится. Один - определение спинового расслоения через касательное расслоение (то есть, только в рамках общекоординатных преобразований, локальной группы Лоренца не надо). Нелинейно реализованное представление. А второй - указанный выше по Фоку-Иваненко - линейно реализованное представление. (По таким фермионам удобно интегрировать и, например, находить гравитационные поправки к уравнениям Максвелла).
3.Кстати, расслоения реперов могут быть и нетривиальными. Например, для неориентированного многообразия. Может быть, стоит их тоже комбинаторно описать даже без спиноров?:)