leblon: (Default)
[personal profile] leblon
Прочел в Википедии, что "форму Киллинга" придумал Эли Картан, а "матрицу Картана" - Киллинг.

Off-topic

Date: 2009-04-17 12:52 am (UTC)
From: [identity profile] sowa.livejournal.com
Вы не могли бы прокомментировать работу http://arxiv.org/abs/0903.4727?

А то математики вдруг заволновались.

Re: Off-topic

Date: 2009-04-17 01:24 pm (UTC)
From: [identity profile] leblon.livejournal.com
Передайте математикам, что они могут спать спокойно. Ничего интересного в статье товарища Дынина нет. Я в деталях не разобрался (там много жаргона из функционального анализа, с которым я незнаком), но никаких новых физических идей там нет. Первая половина статьи - обзор, потом идет обычное каноническое квантование, но с ошибками (игнорируя связи, т.е. закон Гаусса, и калибровочную инвариантность).

Re: Off-topic

Date: 2009-04-17 08:30 pm (UTC)
From: [identity profile] sowa.livejournal.com
Спасибо! Передам.

Re: Off-topic

Date: 2009-04-18 07:02 am (UTC)
From: [identity profile] potap.livejournal.com
А при чем тут физика? Работа математическая. И проблема математическая.

Re: Off-topic

Date: 2009-04-18 07:09 am (UTC)
From: [identity profile] sowa.livejournal.com
Как причем тут физика? Математическая задача является довольно точной (видимо, настолько точной, насколько это возможно) моделью физической проблемы.

Re: Off-topic

Date: 2009-04-18 08:23 am (UTC)
From: [identity profile] potap.livejournal.com
Ну хорошо. Другой бы спорить стал.

Re: Off-topic

Date: 2009-04-18 07:10 am (UTC)
From: [identity profile] leblon.livejournal.com
Проблема физическая, поскольку ей интересовались и интересуются многие физики.

(На всякий случай: одним из этих физиков был Фейнман.)

Re: Off-topic

Date: 2009-04-18 08:24 am (UTC)
From: [identity profile] potap.livejournal.com
Ну тогда ладно. Не пойду слушать Дынина.

Re: Off-topic

Date: 2009-06-14 03:16 pm (UTC)
From: [identity profile] alexander-dynin.livejournal.com

Comrade Leblon admits and shows that he does not understand my paper. He
has no idea what is and what is not there. Large part of the paper is
exactly about constraints and gauge invariance translated to the initial
data of Yang-Mills equations.

I have had rather hot exchanges with Faddeev, Slavnov and other serious
physicists during my April visit to Moscow and St. Petersburg (to the both
Steklov divisions). But their concerns have been different though also
caused by misapprehension. I have placed a streamlined
2nd version of my paper on arXive to address their concerns. (The
bracketed numbers below are
references from the 2nd version.) Also I have added an appendix about
quantum Yang-Mills dynamics and a discussion of asymptotic freedom coming
from

The first concern was how I break the conformal invariance of the
Yang-Mills action and equations to get the physical mass dimension.

Conformal symmetry can be broken, e. g., by Higgs mechanism or by
quantization In particular, in the perturbation quantization this is
done via "dimensional transmutation" of the
coupling constant [13]. However my proof is both Higgsless and
non-perturbative.
Thus my answer is that there is no coupling constant in my paper.

I follow I. Segal's quantization of (constrained) Cauchy data for
Yang-Mills fields along with Schwinger's postulate to quantize Noether
functionals, in particular, the conserved energy-momentum relativistic
vector. The latter has the mass physical dimension. (So in some sense I
got a "dimensionful costant" which is the conserved energy-mass.)

The second concern was about the quantization per se.

I adopt P. Kree's quantization scheme [21] where quantum operators
are continuous linear operators in a 2nd quantized configuration Gelfand
triple but not fields of selfadjoint operators in an unknown Hilbert
space. However, I differ from Kree in two ways:

1. I use the Bargmann-Segal transform of Hida Gelfand triple of white
noise calculus [24].

2. I consider the Noether functionals as the anti-Wick (aka Berezin)
symbols of an infinite-dimensional "pseudodiferential operator" in a
Bargmann-Fock Gelfand
triple over the standard Schwartz triple on $\mathbb{R}^3$.
Characteristically, the quantized operators are not selfadjoint in
Bargmann Hilbert space (the middle space in the triple): they are even not
densely defined there and von Neumann theory of self-adjoint operators is
not applicable.
Still the operators are symmetric.

Now, whatever your definition of the spectrum of a symmetric operator
would be, it should
imply the variational mini-max property. So I define the spectrum of
operators in Gelfand triples by this property.

The anti-Wick quantization is very compatible with such definition, in
contrast with the Wick quantization where a quantized operator with
non-negative symbol may be unbounded from below [16].

There is a serious obstacle though. Even for the number operator all
positive eigenvalues have infinite multiplicity. To proceed further than
the 2nd eigenvalue I use in the mini-max principle the space dimensions
relative the abelian von Neumann algebra generated by spectral projectors
of the number operator.

The von Neumann spectrum of the Yang-Mills energy-mass operator is
infinite and discrete. Finally, the usual mass gap equals to von Neuman
mass gap and so the former is positive. QED.

Profile

leblon: (Default)
leblon

January 2026

S M T W T F S
    123
45678910
11 121314151617
18 192021222324
25262728293031

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 14th, 2026 07:57 pm
Powered by Dreamwidth Studios